skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hossain, A_K_M Manjur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 22, 2026
  2. Recent research has demonstrated the potential for topological superconductivity, anisotropic Majorana bound states, optical nonlinearity, and enhanced electrochemical activity for transition metal dichalcogenides (TMDs) with a 2M structure. These unique TMD compounds exhibit metastability and, upon heating, undergo a transition to the thermodynamically stable 2H phase. The 2M phase is commonly made at high temperatures using traditional solid-state methods, and this metastability further complicates the growth of large 2M WS2 crystals. Herein, a novel synthetic method was developed, focusing on a molten salt reaction to synthesize large 2H crystals and then inducing transformation to the 2M phase through intercalation and thermal treatment. The 2H crystals were intercalated via a room-temperature sodium naphthalenide solution, producing a previously unreported Na-intercalated 2H WS2 phase. Thermal heating was required to facilitate the phase transition to the intercalated 2M crystal structure. This phase transition was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS), and Raman spectroscopy, which confirmed the synthesis of the intercalated 2M phase. Upon deintercalation, crystal and powder samples showed superconductivity with a Tc of 8.6–8.7 K, similar to previously reported values. The generality of this process was further demonstrated using alkali metal triethyl borohydride to intercalate 2H WS2 and produced the desired 2M phase. This novel synthetic method has broad implications for discovering metastable phases in other TMD families and layered materials. Separation of the intercalation and phase transition also has the potential to allow for large-scale synthesis of this technologically important phase with greater control over each step of the reaction. 
    more » « less
    Free, publicly-accessible full text available January 14, 2026